Ant Travels in Bugniverses

How to solve it in eight easy steps (with a few sub-steps)

1. this is clearly, a greatest common divisor problem with a twist: We are asked to find x, y such that
(a) the equation $a x+b y=c$ holds, and
(b) x must be the least positive possible value i.e. $x>0$ and, if $a u+b v=c$ and $u>0$ then $u \geq x$.
2. this kind of equation either have 0 (zero) or ∞ (infinite) solutions:

- it should be easy to check that if

$$
a=4, b=6, c=9
$$

there is no solution because the LHS is even and the RHS is odd.

- but, if $c=18$, we have

$$
x=0, y=3 ; x=3, y=1 ; \text { etc. }
$$

3. the criterium for solution existence is $d \mid c$, where $d=\operatorname{gcd}(a, b)$
4. the values of d, x, y can be found using one of the variants of euclid's algorithm
5. in general, if $d \mid c$, the equation can be solved in two steps:
(a) use the euclid's algorithm to find x^{\prime}, y^{\prime} such that

$$
a x^{\prime}+b y^{\prime}=d
$$

(b) since $d \mid c$ we have $c=\gamma d$ and set

$$
x_{0}=x^{\prime} \gamma, y_{0}=y^{\prime} \gamma
$$

6. although this assures that $a x_{0}+b y_{0}=c$, the condition on x might fail...
7. to find the right value of x we must understant how a change in the " $a x$ " part of the equation affects the "by" part:
(a) since $d=\operatorname{gcd}(a, b)$ and $d \mid c$, we have

$$
a=\alpha d, b=\beta d, c=\gamma d
$$

(b) the previous equation can be rewritten

$$
\begin{aligned}
a x_{0}+b y_{0} & =c \Leftrightarrow \\
\alpha x_{0}+\beta y_{0} & =\gamma \Leftrightarrow \\
\alpha x_{0}+(Z-Z)+\beta y_{0} & =\gamma \Leftrightarrow \\
\alpha\left(x_{0}+A\right)+\beta\left(y_{0}-B\right) & =\gamma
\end{aligned}
$$

(c) so we have

$$
\alpha A=Z=\beta B
$$

(d) since $\operatorname{gcd}(\alpha, \beta)=1$, it must be

$$
A=\beta k, B=\alpha k
$$

$$
\text { because } Z=\alpha A=\alpha \beta k=\beta \alpha k=\beta B
$$

(e) now we have the rule to change x, y in $a x_{0}+b y_{0}=c$:

$$
\begin{aligned}
x_{k} & =x_{0}+\beta k \\
y_{k} & =y_{0}-\alpha k
\end{aligned}
$$

(f) so, any solution x_{k}, y_{k} is related to x_{0}, y_{0} by

$$
\begin{aligned}
x_{k} & \equiv x_{0} \quad(\bmod \beta) \\
y_{k} & \equiv y_{0}(\bmod \alpha) \\
k & =\frac{y_{0}-y_{k}}{\alpha}=\frac{x_{k}-x_{0}}{\beta}
\end{aligned}
$$

8. therfore, we need only to reduce $x_{0}(\bmod \beta)$ not forgetting two details:
(a) if $x=x_{0} \% \beta \leq 0$ we need to add an extra β, so that it becomes positive;
(b) to each β added to the $a x$ part corresponds an α subtracted in the by part; and the number of β 's "added" is ... (exercise);

Appendix

Euclid's algorithm with additional computation of x, y :
def $\operatorname{gcd}(a, b, \& x, \& y):$
if (b > a) return $\operatorname{gcd}(b, a, y, x)$
if ($b==0$):
$\mathrm{x}, \mathrm{y}=1,0$
return a
$\mathrm{d}=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \% \mathrm{~b}, \mathrm{x} 1, \mathrm{y} 1)$
$\mathrm{x}, \mathrm{y}=\mathrm{y} 1, \mathrm{x} 1$ - floor $(\mathrm{a} / \mathrm{b})$ * y 1
return d
from Skiena, S. and Revilla, M, Programming Challenges, Springer

